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1. INTRODUCTION

Several authors'have studied the problem of combining
independent tests, especially noteworthy -among whom are
Pisher (1932), Karl Pearson (1933) E.S. Pearson (1938),
Wallis (1942), A. Birnbaum (1954), Liptak (1958), van Zwet and
Oosterhoff (1967), Oosterhoff (1969), ana Littell
and PFolks (1971, 1973). The combination problem has been
.cast and analyzed in various canonical forms by these

» authors, but for the purposes of -this easay its essentials

may be deecribed as follows: Let Ti’ i=1,2,...,k be k

independently distributed -statistics, the large values

of which are significant in testing respsctive null
hypotheses H,,: 6; = 64, dgainst one-asided alternatives
Hi 2 04> 049 concerning real-valued parameters ei-bt>thd
distridutions of T;, i=1,2,...,k. The problem is to find
j & ;oasonable combination, i.e. a function of T1. Tz, ceey
{ T, vhich may be used for testing the .overall hypothesis

BO: ei = eiO’ i=1,2,.¢0,k versus the .alternative 313 91?- eio,

4=1,2,...,k with at least one inequality setrict. Many

s A -

problems of combining.teats of composite hypotheses, such
as F-test of the general linear hypothesis, can be reduced

E to this form.
|
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In describing the combination problem it is often
convenient to use the P-values Pi of the tests as the
pivotal entities instead of the statistics T:I.‘ a
combination statistic is then a function of P1. Pz, B
Pk‘ The P-~values P:I. is of eourse the probability,
under the null hypothesis, of obtaining at least as
extrome a value of '.l‘i as observed. Thus dencting the

null distribution of T:i. by-l‘io the P-value is given by

Py = 1-1'10(1‘1), if large values of T; are significant
- r:I.O(Ti)’ if small values of T:L are significant,

(1.1)

An advantage of using P; is that it can be interpreted

by itself, without a reference to the distribution ot--Ti.
Moreover, if rio is continuous the null distribution of

P; is uniform on (0,1). ’'his latter property of the
P-values makes the null distributions of combination
.ﬁtistic manageable. In fact, most common combination
statistics in the literature have simple null distributions.
Notable examples of such statistics are (i) T(T)-nin P:L'
due to Tippett (1931);(11) T(U)-P(r). the r'B largest

of the k P-values, due to Wilkinson (1951) 5

(1i1) T(’)- -28105P1. due to Fisher; (iv) T(P)--Zmog(‘l-P),
due to Pearson; and (v) T(u) -8“10'1(1-P1), due to
Liptek, where ©(-) is the standard normal d.f. and
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@; 20 are arbitrary weights. Under the overall mull
hypothesis Ho T(T) and TW) have beta distributions,
T(F) and (P) are 12 -variates and the Liptak’s
statistic T(L) is normally distributed. Among these
procedures Fisher's procedure, which rejects Ho when
‘.!(F) is large, has been shown by Littell and Folks (1973)
to be most efficient with respect to. Bahadur's measure
of A.R.E. A forteriori, Littell and Folks (1971, 1973)
demonstrated that Fisher’s.method has maximum Bahadur
A.R.E. among all reasonable combination methods based
upop the P-values.

Furthermore Birnbaum (1954) proved that Wilkinson’s
(1951) and Pearscn’s (1933) method are inadmissible and
grecommended the use of Fisher's méthod for combining
statistics whose distributions belong to the
exponential family.

In this paper we introduce a new combination
l.tatistic, the logit statistic T = "i%: 4108 [Pi/ “’Pi)]
and suggest rejecting Ho when it is large, We show
that this procedure has the same Bahadur efficiency as
FPisher's method and consequently, because ¢ a result
of Littell and Folks (1973), both procedures are
optimal.




The Logit statistic, its exact null distribution and
& simple t-approximation to the null distribution are
given in section 2. 1In section 3 the exact Bahadur

slope is computed. In section 4 wé answer a question
raised by Oosterhoff (1969, p.42) on the admissibility
of riQher'a method and discuss some complete class
results for both methods. In section 5 we describe

a Monte Carlo simulation of the .power functions of the
procedures when combining Student t tests.

2. THE IOGIT PROCEDURE -
Following Berkson's (1944 ) term for the log-odds
ratio loglF/(1-P)] the combination statistic

k
Ty = =%, loglP;/(1-Py)] (2.1)

is termed the logit statistic. When the null
distribution rio of Ti is continuous Pi is uniformly
distributed on (0,1). Consequently under the null
hypothesis H,, - logiP;/ (1-Pi)J is distributed according
to the logistic distribution function

-1
#(z) = [1 ¢+ exp(-2)] , =w<g< = (2.2)




P(2) = Xy Lo W1 "1)

and the Iogit statistic is a sum of i.i.d. logistic
varietes under Ho" George and Mudholkar (1977) have
shown that the exact null distribution, ro of TL’ is
given by

k—l k-l-p p+r+ ik oF r k-1 i
1"’0(’) ® p= 0 rEO m-l (-1) Ay +P p+r+1,m T p+r/(’"'n'°

Ce"/(:l-e")]in (2.3)
when k is even, and by

k 1l k-l-p p+ r*ml r{.k

(72 (].4@"’)]k (2.4)

irhon k is odd; where ‘x,p" are computed from the
following equations.

(xeinnelX . ‘x.o * ‘k.l' + Ak’znz teee (2.5)
m .
(x0/sin7s) = I (-1)™1 [(22-2)/(2m) 1, (na)

(2.6)

|
‘k JPoperel,m T p-n."'("':D
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vhere an’s are Bernoulli numbers, and Sn’m’s are

Stirling numbers of the second kind. Thus when k = 2,

1-Fy(z) = z[o'f/(l-o")lz + (z=1)(e"% (1-0"%)] (2.7)

and when k = 3
1.r3(,) - 0 % (1+e"%) - 2zo'§/(1+e-z)2

+ (32+ uz)a'z(l-n'z)/.?(lu")3 . (2.8)

George and Mudholkar (1977) have illustrated
that the convolution of k-logistic random variables,
and hence the null distribution of the Icgit statistic,
is well approximated by the mormal distribution with
equal variance, that this approximation becomes very
go0d when Edgeworth-corrected, and that a multiple of
the student's t-distribution with the degrees of
freedom obtained by considering the kurtosis provides a
simple and an even better approximation. Specifically,
for the null distribution of logit statistic, it was

proposed that
. k(5k+2)
- él“"“’i/ (=P % S(oxea) Pses - (2.9)

In Table 1 the quality of this approximation is
illustrated numerically for ks=3.




3. BAHADUR A.R.E. OF THE LOGIT STATISTIC
The concept of Bahadur A.R.E. is well discussed in

the literature (Bahadur 1971). Let T, be a statistic
for testing a null hypothesis Hb: 6 € H.o against an’
alternative H:0 s@ . Assume, without loss of
generality, that large values of-Tn-are significant,
and let_'l‘n -t be observed. Then the rate of convergence
to zero of the P-value L (t ) = Pr{T > t |Bj} asn-~«
is a measure of the efficiency of the test Tn‘
Specifically suppose that for i = 1,2 and 6 e(g)l, there
exist positive numbers ci(e).such that for sequences-of
tests (Tg})] with corresponding Prv;iues {Léi)}

i{..m“- % Log Lgi)- cy(6) ais. iPG] (3.)
Then the Bahadur A.R.E. of {T{1)} relative to
(ng)} is given by

'12(6) - cl(e)/c?_(e) - (3.2)

8ince a Bahadur. slope is not always easy to
compute, Bahadur (1971) gave the following result to
facilitate its computation.
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Theorem (3.1) (Bahadur). Suppose that

§71/2 T, ~ b(6) a.s. Fy,.8 s~(ﬁk, (3.3)
where - < Db(B) <~ and

Lin 5" l0g{1-F (/0 t)] = -£(t) (5.4)
n-

for each t in some open interval I, whare Fn(') is

the null distribution function of '.l‘n. f is continuous

on I and {b(0), & €(@),} =I. Then

Lim ™! Log L, exists
n=

‘and

g T e I S

c(8) = 2£(v(9)). (3.5)

Theorem 3.2: For i = 1, «.., k, let (mﬁi’] be

sequences of statistics for respectively testing

= 8,, against H,,: 6, > 6,, , and let (Lni be

Bso* %1 * a0
the corresponding F-values. Assume that the Tgi‘) '8
are ;ndependently distributed and that there exists
a positive value function..ci(e i) defined for
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;
niéﬁ' n{l log Lgi) - ci(ei)/z_ a.s. (3.6)
Also assume that
Lim n./n = A, ' (3.7

where nk = n, + eee + D Then the exact slope of the
Logit combination procedure for testing Bo: ei = eio,
i = lgooo’k against Hl: ei ?_eio, .i-l’.oogk with at leaat

one strict inequality, is-.given by

k
cL(elvOOO’ek) - i§17‘ici(ei) o (308)

Proof: It is well known that if bn('.l‘n) is a strictly

increasing and continuous function of T, then (¢, (T.)}

and {Tn} have the same exact slopes.

Hence let

,gl.)*_ Ve TE;L)

k -
-5 V2 &) g1 - 1{Dw (P
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Then

¥ S
n"]/""rgl‘)* =, n 1 1°3(1'I‘r(xji_)). -4&,n 1 1‘°5Lx(1;)

k k =15 0gr(d)
- &) (ay/mnit 20g(1-1{D)) -, (B lo8t, .

Clearly Lim n;]'long‘t‘) - ci(ei) w.p.l implies that
n.~* i
i

Lim nzl log(l - L(i)) =0 w.p.l.
n = B

dence froa (3.6) and (3.7), it fcllows that
-1 2 (L)

Now let Fg denote the d.f of Tgr‘)*. Then
1 - Fg(t) =1 - ro(vfnt) o <t< o - (3.9)

where I'O is the d.f. of TgL). By combining the expressions
for d.f. of F, given by (2.3) and (2.4), it can easily
be shown that ‘

1-FE(Vn 2) = (7% (1-¢7%)In (nz) if k is even,

5 (3.10)
- [e'nz/(he'nz)lhz(nz) if k is odd,
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where for Jj = 1,2

By(z)=t4p) (2 %/ (1e(-130e"%)1 o, ...

¢ by s DLEY a(-DITN ™
pr,;j(z)’ 1< r < syare polynomials in z,

and rm'd,s, 1< rm,j < k, are positive intogers.

From (3.10) we get

& %— logl l-F@(fn 2)] = -z~ %ﬁog(l-e'nz)xlog hl(nz)) if k is even,

= -2- 1 {log(1+e™%)+10g hy(nz)) if k is odd,

Clearly Lim hj(nz) = 1. Hence
n-e

- i&mﬁ -3—1' logll - Fg(fn z)] = z.

Using Theorem 3.1, we immediately get the exact slope of

k al
Tgl’)ﬁ to be iglkici(ei)' Littell and Folks (1971) have shown

that under the ccnditions lo‘f Theorem 3.2, the exact slope
of Fisher's procedure is i}-:lkici(ei)' Furthermore they showed

(1973) that among "essentiallyn all combination procedures
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based on P-values, Fisher's procedure is optimal
according to Bahadﬁr A.R.E. We state a slightly more
general version of this result, which holds for the
Logit and Fisher's procedures.

Theorem 3.3: Let Tn be a combinetion statistic

for testing H. against H, based on P-values L(l),...,L(k).
0 1 n]l n,

Buppose that Tn satisfies the following conditions.

b 1 Tn is non-decreasing in each Lgi), i.e.,

£< 8),.e., &5 4 inply D (2] yeeeslf) ST (L) eenty)..

In this case small values of Tn are significant.

II. Tn is non-increasing in each‘Lﬁi), i.e.,

i
£,5 21,000 S &0 imply T (£)4eeenby) 2 B (S 4 N
In this case large values of Tﬁ are significant.

Then the slopes c(64s---10)) Of {7} and
°L(°1"“’6k) of the Logit and Fisher's procedures
satisfy the inequal?ty °(61""’8k)-f cL(el,...,ek).
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REMARK: Wieand (1976) has discussed conditions under
which Bahadur's and Pitman's methode of comparing tests
coincide. Under the conditions he stated both the Logit
and Fisher'’s methods of combining tests are optimal

with respect to Pitman's efficiency as well.

TABLE 1

THE EXACT AND APPROXIMATE¥®D.F.
OF STANDARDIZED ILOGIT STATISTIC, k=3

x Exact Approximate Error
.05 «5209 +5208 0.0001
25 «6033 .6028 0.0005
45 .6809 .6802 0.0007
<65 . 7506 . 7499 0.0007
1.00 .8486 .8482 : 0.0004
1.20 -8903 «8901 0.0002
1.45 09291 9291 0.0000
1.75 .9598 «9600 -0.0002
2.50 .9918 +9920 -0.0002
3.00 <9975 <9975 0.0000

#The approximation is based upon Equation 2.9.




. Ti is normally distributed with a known variance.

ratio (MLR) properties, then monotone procedures are

-oisentially complete. Brown et al showed that under the

- 15 =

4. ADMISSIBILITY AND COMPLETE CLASS RESULTS

Several researchers (A. Birnbaum 1954, 1955;
van Zwet and Oosterhoff 1967; Oosterhoff 1969 and Brown,
Cohen and Strawderman 1976) have discussed the question
of admissibility and membership in complete classes of
combination procedures. Birnbauﬁg(1955) proved that if
the distributions of the component test statistics Ti are
one-parameter exponential families, a procedure for
combining these statistics can be admissible only if its
acceptance region is monotone and convex in the (tl,...,tk)
space. He further showed that this condition is both
necessary and sufficient for.admissibility if for each i,

Oosterhoff considered the more general problem in which the
distribution of the Ti.s have strict monotone likelihcod

conditions stated by Oosterhoff monotone procedures are
complete. We now compare the Logit and Fisher's procedures
in the light of the above results.

First we answer a question raised by Oosterhoff (1969,
page 42) and show that Fisher's procedure is admissible
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when the distributions of tkhe component statistics are
one-parameter exponential families.

Theorem 4.1: 'If for each i, the statistic Ti for
testing H,,: 83 = 039 against Hliifpi>'eio have

densities that can be expressed in the canonical form

8 t;
ti(ti) = n(t,) c(8,)e . (4.1)

i=1l...,k and if the Ti;s are independent, then
Fisher's combination procedure is admissible for testing
HO: ei. eio,i'l,..o 'k asainstﬂi: ei 2 eio’ i-l’.o-gk
with at least one inequality.strict.

The following result given by Mudholkar (1969)

is used in the proof.

Lemma 4.1: Let si(xi) be positive functions of
X4 Aud,coeske IX gi(xi) is a logconcave function of
x; for each i, then the set A= {(xl....,xk): 1&151("1»"}
is convex for any positive real comnstant c.

Proof of theorem 4.1: It is.easily shown that if
the distribution of Ti is given by -equation 4.1, then
P-value corresponding to observed value Ti - ti is given by

Pi(ti) -l rio(ti).
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Consequently, the acceptance region

k
‘r - {(tlgoo.’tk)': -2 izllos Pi(ti)<cf } ’

whoro_cr is a constant, of the r§sher’s procedure, may
be expressed as

k el
Now for any vector (fl... fi) such that €;<:ti, i=l,..0,k,
it is clear that (tl,....tk) GAr implies that

(¢ ...,fk)EAr. Hence Ap is-a monotone acceptance region.
Now since ‘1‘i has an exponential family distribution,
lrrio(ti) is logconcave. Therefore by lemma 4.1,
Ap is convex. The result ‘of -Birnbaum (1955) then implies that
Fisher's procedure is admissible in the above context,

It is clear that in the exponential family case the

acceptance region

k
Ay = ((t5e0nt): (B 2ogll2-F o (8)/Fio(t;01> ¢ )

where cy, is a constant is not convex, however,
convexity of an acceptance region is not known to be

sufficient for admissibility.

' Consequently the Logit procedure camnot be ruled
out as inadmissible in the context of exponential family
of distributions. Furthermore, in the larger context of




combining tests whose component statistics have M.L.R. or

strict M.L.R. properties, results due to Brown et al (1976)
can be used to show th;t both procedures belong to essentially
complete or complete classes of tests. The combination of
independent Student t test and independent F tests are
particular cases of the M.L.R. families that are of practical
importance.

We report here an empirical evidence that shows that in
combining independent Student t tests, neither of the logit or
Fisher's procedures dominates the other uniformly.

5. A STUDY OF THE POWER FUNCTIONS BY SIMULATION

In this section the power functions of the logit and
Fisher's combination statistics are studied in the context
combining Student t tests. Let t, "y i=1,2 be two independent
Student t statistics with degrees o; freedenm ni-1 and n2-1
respectively. Let t“i"‘ be used to test H;: pi-o versus
Hy: “i>°' where K, is the unknown mean of & normal
population with unknown variance. Consider the problem of
testing the combined pull hypothesis H,: i ,= p,=0 against the

alternative H,: Either 511> 0 or ik, >0 by using tbe Logit
statistic Q(I‘) = log E1-P1)/P1] + log E1-P2)/P2] or the

FPisher's statistic r(’ )- =2l0g P1-2 lost, where P1 and P2

are the P-values corresponding to tn1-1 and tnz_

5 respectively.
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Although both ™I end T¥) nave simple mull distributions
under BO' their distributions under a, are complex,
consequently it is futile to attempt to obtain their exact
pover functions. A reasonable estimates of the powers may
be obtained from a Monte-Carlo experiment.

5.1 THE MONTE CARILO EXPERIMENT

For i=1,2 By independient standard normal variates
are gensrated on the IBM 360/365 computer at the University
of Rochester by using the McGill University random number
package developed by a technique due to Marsaglia (1961)
for generating standard normal deviates. N(Pid) deviates
are obtained by adding By to each gen®rated variable. From

these independent Student t statistics and their corresponding
P-values are obtained.

The power functions of the logit and Fisher's procedures
are approximated from these statistics at levels of signifance
Ga.01 and .05 and for sample sizes n,-na-S and n,-n2-1o.

The power of each procedure is estimated at i ,=0.0 (0.1) 1.6
ad ¢, = 0.0 (0.1) 1.6 by the proportion of times the
procedure rejects Hy in 3000 trials at each (91, pz).

$.2 RESULTS

Table 2 represents some estimates of the power functions
of the logit and Fisher’'s procedures. From the table it can
be observed that the power of each procedure is ncreasing
in L) when u1 is hol_d fixed and vice-versa; and that the
Logit procedure is slightly superior to Fisher's procedure

around the equiangular line W 4e=p2 while FPisher:s procedure
is superior elsevhere.

e ——— e —
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POWER FUNCTION OF THE IOGIT AND FISHER'S

METHOIS FROM A MONTE CARIO EXPERIMENT

By
92 0.0 002 004 006 008 1.0 1.2 1.4 106
a .05’ n1 - n2 = 5
L .49% .584 .663 .780 ,855 .914 .958 .976
" .558  .558 .641 .678 .772 .83 .897 .943  .963
s.4 <423 442 .516 .610 .T11 809 .B74 .918  .948
472  .484 .545 .610 .TOO .789 .853 .900 .935
1.2 354 .379 .440 .524 .615 .717 .788 ..852 .893.
.254  .2T1 .353 .424 .3539 646 .T24  .787  .850
1.0 274  .281 .357 .411 ..511 .617 .698 .762 .833
<195  .217 - .267 .357 1452 .555 .635 .T12 .774
0-8 197 .215 .254 .340 432 .535 .610 .694 .773
<120  .149 .189 .263 .358 .433 .534 .598 .688
0.6 425 .147 .182 .259 .337 .420 .525 .609 .699
3 .088 .103 .142 .195 .259 .331 .428 .515 .589
“4 083 .106 .136 .189 .254 .333 .439 .533 .633
0.2 <053 .068 .098 .139 .204 .277 .342 .45 .508
054 .069 .097 .140 .209 .287 372 .484 .581
0.0 <052 .056 .088 .126 .190 .263 .332 .395 .486
.054 .054 .090 .129 .192 .275 .365 .455 .550
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By

“2 0.0 0.2 0.4 . 0.6 0.8 1.0 1.2 1.4 1.6

G = 001' 31 - n2 =5

7.6 <191 .205 .281 .339 .469 .578 .645 .757 .801
«216 217 .286 .336 .450 .441 .607 .TIT - .TTH

-143  .158 .226 .296 .391 .496 .572 .670 .727
«151  .167 .227 .287 .370 .463 .535 .631 .683

1.4

099 .122 .170 .247 .315 .404 .515 .578 .653
[ .106 .128 .167 0228 0283 0381 0481 0541 : 0621

s.0 <070 .080 .121 .172 ..231 320 414 463 . .555
,070 .080 .115 .159 .210 .297 .397 .429 .527

0.8 <047 058 .084 .135 1180 .256 .305 .391  .460
048 .05 .081 .124 .160 .230 .283 .373  .438

0.6 0032 0045 =°54 0081 0132 5171 5228 .286 0353
«034 .048 .052 .076 .120 .161 «210  .272 .348

t’ 0.4 019 .024 .035 .050 .089 .127 .160 .203 .274
; 018 .023 .035 .048 .081 .120 .156 .206 .281

0.2 009 .015 .027 .038 .058 .086 .124 .157 .203
009 .0t .024 .036 .055 .090 .122 .167 .220

0.0 009 .011 .019 .032 .050 .073 .109 .143 .172
009 .012 .021 .032 .048 .081 .115 .152 .200




1
By 0.0 0.2 0.3, 0.4 0.5 0.7 0.9 1.0
@ = .05 n, = 10, n, = 10

4.0 <915 595 612 .675 .737 .790 .904 .952 .963
. 651  .761 .676 .T720 .755 .811 .898 .948 .958.
0.9 .487 :.518 .546 .592 .683 .732 .853 .927 .954
550 .579 .599 .622 .705 .735 .836 .917 .950
0.7 339 353 387 .451 .539 .598 .754 .850 .895
T <374 383 .410 .466 .535 .598 .T37 .845 .894
0.5 .199 « 201 .240 .292 .362 .440 .808 .721 . 789
211 «220 «249 .294 .358 .429 .601 131 807
0.4 151 165 183 .237 .287 .358 .502 .663 .726
0.3 100  .121  .143 .175 .228 .297 .458 .597 .666
« 106 .122 .148 .170 .226 .300 .468 .630 .709
0.2 .080 .075 .102 .143 .181 .240 .388 .543 .626
077 075 .102 .142 .183 .244 413  .597 .é88
0.1 056 .062 .078 .108 .146 .211 .360 .534 .573
.058 . .062 .078 .105 .151 .224 .393 .596 .642
o.00 <952 .052 .071 .101 .148 .203 .338 .495 .557
049 .054 .066 .105 .156 .219 .378 .558 .631

%lower elements correspond to power of Fisher's method
Upper elements correspond to power of Logit method.
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